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The motion of a rotating layer of fluid with a non-zero component of the azimuthal vorticity along the 

wall of a circular tube of variable radius is considered in the long-wavelength approximation. A system 

of equations is obtained which is analogous to the equations of turbulent shallow water [l-3]. A 

rigorous criterion is established which plays a role analogous to the velocity of sound in a gas and 

which separates solutions showing qualitatively different behaviour. The similarity between the 

motions of a rotating layer of fluid and the flows of an ideal gas in nozzles is shown. 

Equations, analogous to the equations of turbulent shallow water [l] have been previously [4] 
obtained for tornado-like and hollow vortices in the long-wavelength approximation. These 
equations were subsequently reduced to a system of integrb-diffferential equations similar to 
those in [2,3] (for an infinite hydrodynamic system [2]). 

This method is used below to investigate a hollow vortex with an axial velocity in a tube of 
variable radius. Flows of this kind occur in the nozzles of centrifugal sprayers. The motion of a 
viscous fluid in a boundary layer in the conical nozzle of a centrifugal sprayer has been 
considered in [5]. 

1. FORMULATION OF THE PROBLEM 

The steady rotationally-symmetric flow of an ideal incompressible fluid is considered. There 
is no gravitational force. A cylindrical system of coordinates (r, cp, z) is introduced, with the z- 
axis directed along the axis of symmetry. The fluid occupies the domain z a 0, q(z) c r =S rO(z), 
where rob(z) is the radius of the tube, which is a specified function of z, and 4(z) is the radius of 
the free surface. It is assumed that the flow parameters at z = 0 are known. The evolution of 
the flow is investigated as a function of the z coordinate. 

Length, velocity and density scales are introduced with the aim of changing to dimensionless 
quantities. The characteristic scale of the changes along the z-axis is adopted as the unit of 
length, the magnitude of the rotational component of the velocity when z=O and r=r, 
is adopted as the unit of velocity, and the density of the fluid is assumed to be unity. All 
quantities, even if this is not especially pointed out, are subsequently taken in dimensionless 
form. 

The following notation is introduced (u, v, w) are the velocity components corresponding to 
(r, <p, z), p is the pressure and 6 is the dimensionless value of r, when z = 0. It is assumed that 
Ml. In order to change to the long-wavelength approximation, the following extensions of 
the coordinates and functions [4] are performed 
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r2-+52q, z--)2, 2ur+ii2q, ur-+&, wjw, p+p 

In this case, the boundaries r,(t) and rO(z) pass into rk(z) and q@(z) and, according to the 
definition 6, a = 1. 

As a result, the equations of motion and continuity take the form 

q%+wwA, =0 

(6212)(qq?+q2/(217)+wq~)-A2ftl=-21?p,t W) 

qw,,+ww, = -pz, qq +w, =o 

The corresponding partial derivatives are denoted by the indices of the independent 
variables. 

The boundary conditions 

p =o, q=wrl1z* r(=qw tw 

(1.3) 

are imposed on the free surface and the bo~da~ of the tube. 
In passing to the long-wavelength approximation, terms in (l.l), which are proportional to 

6’, are omitted. The resulting system is transformed in the same way as in [2-4]. The new 
independent variables z, v, v E [0, l] are introduced, using the relationships z = z’, rl= R(z’, v), 
where R satisfies the equation and the boundary conditions 

wRz. = q; R(z’, 0) = 7jo, R(z’, 1) = 111 (1.4) 

The initial value is R(O, v), an arbitrary single-valued continuous function which satisfies the 
last two equalities in (1.4). 

When R is defined in this way, the boundary conditions (1.2) (for q) and (1.3) are 
automatically satisfied. The unknown boundary q(z) becomes the known boundary v = 1 and 
the boundary q&z) in v= 0. After neglecting terms in 6’, system (1.1) in the variables z’, v 
takes the form (the prime on z’ is henceforth omitted) 

WA, = 0, (A2 / (2R2’)R, = pv 

R,ww, = -4 PZ + R,pv 9 qv + Rvw, - Wv = 0 

It follows from the first equation that A= A(v). Then, using the second equation, we 
integrate over v from v to 1 and eliminate p taking account of the pressure condition (1.2). q is 
eliminated using (1.4). As a result, after some reduction, we obtain equations in wand R 

wwz = (A; i (2R;L)Rl, +(iGRl-‘A&); (wR,jz ==0 

where A1 and B, are the values of A and R when v= 1 (on the free surface). 
System (1.5) is solved with the initial data with z=O. Let us assume that w = w&v), 

R = 1 -eov, when z =0, where a, = 1 -q,(O) (account has been taken of the fact that R (0, 
0) = q@(O) = 1 here). The case is later investigated when the circulation A is constant and the 
vorticity of the flow is due to the non-constancy of the axial velocity. It is initially assumed that 
the cross-section of the nozzle varies monotonically. 

In this case, the following theorem holds. 

Theorena. Suppose A = 1, the function w,,(v) is bounded and w@(v) 2 y >O where Y is a 
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constant Q(Z) is a monotonic function and 

h=+)(l--E0)-2jw~2dv 
0 

A, =(1-Eo)*[1+(1-Eo)y2]-2 -;~&oWo(+v; -y2)-3’2b 

It is assumed that X., < 0. The following cases are distinguished. 
1. h c 1. Then, if rk(z) > 0, a solution exists for all z + 00 while, if qO(z) < 0, a solution exists 

for z c z*, where z * is the solution of a certain integral equation and, moreover w, + 00 and 
R, +- when z+z*. 

2. h > 1. Then, if To(z) > 0, a solution exists for z 6 1, where I is found from the equation 

q(l)=(1-Eo)[1+(1-Eo)~2]-‘+beowo(W~-y2)-”2dV 

and, when z = I, we have w(v) = 0 for v specified by the equation W,,(V) = y. If -rlo(z) CO, a 
solution exists for z s z * and W, + 00 and R, + = when z + z *. 

Proof. It is assumed that A = 1 in (1.5). The system is integrated from 0 to z. An expression 
for R is found from the second equation by subsequent integration over v. As a result, we 
obtain 

v+l/R, =1/(1-&g), (~=wLv;) (1.6) 

R=90(z)-~jEO~o(~~+ly)-“2~ 
0 

Since RI is the value of R when v= 1, it follows from the first equation that \v= w(z), 
w(O) = 0 (since RI(O) = 1 -E,,). After some reduction Eq. (1.6) becomes 

TOO) =Aw) (1.7) 

f(Vr~=~l-E,~[l-~I-&o~~]-‘+~~ow,~~~+~)-”~d, 

The problem has therefore been reduced to finding the implicit dependence v(z) which is 
given by (1.7). The function f(w) is considered in the interval -y2 G w c l/(1 - eo). It is obvious 
that f(w) > 0 in this interval. It can be shown by differentiation that f’(v) > 0. It follows from 
this that f(w) is a monotonically increasing function. f’(-r”) = h, < 0, f’(0) = (1- ~,,)*(l- a) 
follows from the expression for f’(w). 

1. Let h< 1. In this case, by virtue of the monotonic increase in f’(w) and the inequality 
f’(-y*) c 0, a graph of the functionf(w) has the form which is shown qualitatively in Fig. 1. It 
follows from this graph that, if no(z)>0 (the nozzle is expanding), then f(w), w and, 
consequently, w increase as z increases and a solution exists for all z. If q,,(z) < 0 (the nozzle 
becomes narrower), then f(w), w and, consequently, w decrease as z increases and a solution 
only exists for z G z*, q0 3 &, w a w*, where w * is found from the equation f’(w*) = 0, and 
z* and q* are found from (1.7) after putting w=w* in it. On differentiating fly) as a 
complex function of z and taking account of (1.7) we obtain 

By virtue of the fact that ql, < 0, f’2 0, it follows from this that \y, + --m when z + z *. 
Then, according to the definition of w and (1.6) we have wZ + -= and R, j--m when z + z *. 
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2. Let ii > 1. In this case f’(0) c 0 and the function f(w) has a minimum to the right of the 
origin of coordinates. It follows from this that, if no(z) > 0 (the nozzle is expanding), then f(v) 
increases, while w and w decrease and a solution then exists until w reaches a value of -y2. 
Hence, a solution exists for z s 1, where I is calculated from (1.7) with w = -y’. It follows from 
the definition of w that, when z = I, we have w = 0 for v specified by the equation wO(v) = y. 

If I$&) c 0 (the nozzle becomes narrower), then f( v) decreases while w and w increase and a 
solution exists for z C z*, r\ 3 r)*, w 6 we, where w * is found from the equation f’(w*) = 0, 
and z* and q* are found from (1.7) after putting w =y* in it. It follows from (1.8), the 
de~nition of v and (1.6) that v, + OQ, wZ --+ ~0, R, -_j 00 when z + z *. 

For mathematical generality, we will now consider the case when h, > 0. Such a flow is 
hardly physically real since the function (w,’ -Y’)“‘~ must be integrable in [0, l] subject to this 
condition. 

Asserhm. Let the conditions of the theorem, with the exception of the inequality h, ~0, be 
satisfied. Let us put h, 3 0. Then, if Q(Z) > 0, a solution exists for all z + 00 and w increases as 
z increases. If Q(Z) < 0, then a solution exists for z ~1, where 1 is found from Eq. (1.7) with 
w = -y2. Here, w decreases as z increases and, when z = 1, w = 0 for v which are specified by 
the equation w,(v) = y.. 

The proof follows from the fact that the function f(w) is monotonic in the interval l-y”, 
l/(1-so)] when h B 0. 

We note an interesting result of the theorem. fn the physica~y important ease when h, c 0, 
the behaviour of the flow is qualitatively different in a contracting and in an expanding nozzle. 
In a contracting nozzle, a solution always exists just for finite z G t * and the solution ceases to 
exist on account of the derivatives becoming infinite. In an expanding nozzle, when h < 1, a 
solution exists for any z + 1 while, when h > 1, a solution exists up to z s I, where 1 is found 
from Eq. (1.7) with w = -y2 and a solution ceases to exist due to the axial velocity vanish~g for 
v specified by the equation wO(v) = y. 

The results which have been obtained using the established properties of the function f(v) 
and relationships (1.7) can be generalized to the case of a non-monotonic change in the cross- 
section of the tube. For instance, when h> 1, a solution exists for those z for which the 
inequalities are satisfied: if h, c 0 (Fig. l), then $&z) 2 f(w*), if h, 2 0, then %(z) 2 f(-Y’). 
When h > 1, a solution exists until when ~(-y’) =s $,(z) s f(w*). 

Fig. 1. 
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2. DISCUSSION OF THE RESULTS. ANALOGY WITH THE FLOWS OF AN IDEAL GAS 

It has been shown [4] that, in the long-wavelength approximation, the equations of motion of a 
fluid in a hollow vortex with a constant circulation are analogous to the equation of turbulent 
shallow water [2,3] and, consequently, possess the same hyperbolic properties [3]. Using this, 
let us find the condition under which the velocity of a characteristic of the discrete spectrum is 
equal to zero. On putting A = 1 in (1.5) and allowing for the fact that R = Q,(Z) when v = 0, we 
obtain the equations 

2 R,2 ww, - ) R,,dv = qoz, Rvwz + wR,, = 0. 
0 

From this, just as in the well-known approach in 131, we obtain the required condition 

(2.1) 

Substitution of the expressions for w in terms of w, R, and R,,, calculated from (1.6) into 
(2.1) shows that relationship (2.1) is equivalent to the condition f’(w)= 0. Hence, in a 
contra~t~g nozzle, a solution ceases to exist at the point where the velocity of the characteristic 
in the fixed system in which it is measured is equal to zero. 

Note the analogy between the flows of an ideal gas and the flow of a layer of a rotating fluid 
in nozzles. The motion of the fluid when h c 1 (Fig. 1) is analogous to the supersonic flow of a 
gas while, when h> 1 (the minimum of the function f(w) lies to the right of the origin of 
coordinates) it is analogous to the subsonic flow of a gas. In the first case, there is an accelera- 
tion of the flow in an expanding nozzle and a solution exists up to z -+ 00, In a converging 
nozzle there is a retardation of the flow and a solution ceases to exist when the velocity of the 
gas becomes equal to the local velocity of sound and, in the case of a layer of fluid, the velocity 
of the characteristic in the fixed frame of reference becomes equal to zero. These conditions 
are mathematically equivalent since the velocity of sound in a gas is also the velocity of the 
characteristic. In the second case (subsonic flow), the flow slows down in an expanding nozzle 
and a solution exists until its velocity vanishes at some point. In a converging nozzle, there is 
an acceleration of the flow and a solution exists until the velocity of the gas becomes equal to 
the velocity of sound or the velocity of the characteristic vanishes. 

In this connection, it may be postulated that a phenomenon must occur which is similar to 
the formation of shock waves in gas dynamics during the flow of a rotating layer of a fluid 
when the velocity of the layer becomes equal to the local velocity of the characteristic. This 
may be a “jump” of the vortex (which is analogous to a hydraulic jump in shallow water flows). 
If retardation of the flow occurs and the vertical velocity vanishes somewhere within the layer, 
“destruction” of the vortex can occur at this site. 
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